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Introduction 
Here we review the complementary areas of Machine Learning to enhance Cyberinfrastructure 
(MLforCI or what we called MLforHPC in previous work [1], [2]) and Cyberinfrastructure to 
enhance Machine Learning (CIforML or what we called HPCforML). Rather than discuss 
whether to use the term HPC or CI, we should humbly reference the original contribution [3] 
“Machine Learning for Systems and. Systems for Machine Learning” by Jeffrey Dean of Google 
at NeurIPS 2017. So we use CI, HPC or Systems interchangeably. In general terms, both areas 
MLforCI and CIforML are very promising with CIforML offering a transformative vision for 
simulations with speedups of 2.109 reported in a recent paper [4]; effective performance of 
zettascale and yottascale should be achieved across many fields. Such increases coming from 
essentially new algorithms,  are much larger than those possible with just novel hardware. 
 
CIforML will drive the Big Data revolution with HPC techniques, often developed for simulations, 
integrated into deep learning (DL) and machine learning (ML). Nowadays DL is tending to 
replace classic ML in many large scale data analytics (including those used in CIforML) and so 
HPC is particularly important in DL and use of HPC for DL is already pervasive in both academic 
and industry problems. In this merger of Big Data and simulations ideas, one can expect greater 
use of Big Data software (the Apache Big Data Stack [5]) across the board. In greater detail, we 
can summarize opportunities and status as follows 
 
MLforCI Remarks 
Here we classified [6] approaches into 8 detailed and 3 high-level areas with the latter being: 

1. Improving Simulation with Configurations and Integration of Data 
2. Learn Structure, Theory, and Model for Simulation 
3. Learn Surrogates for Simulation 

 
We have general remarks on MLforCI below but first comment on the styles of use for MLforCI 
given above. MLforCI is broadly applicable but current use is nonuniform across domains with 
material science and biomolecular simulations being particularly advanced. A major need is to 
support the use of MLforCI over a broader range of applications to understand it better, gather 
requirements and opportunities and use this to improve Cyberinfrastructure support to make 
MLforCI more effective for more users and make it a frontline supported service at production 
computing centers. 
 
The category Improving Simulation with Configurations and Integration of Data includes 
ML and DL enhancements of the well-established ideas: Autotuning and data assimilation. The 
former is an important area but not likely to lead to large improvements as it keeps the 
simulation largely changed. We found [7] a factor of 3 performance increase using a learning 
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network to choose the time step dynamically and make a better prediction for a consistency 
factor. Data assimilation is illustrated by use of neural nets to represent microscopic structure 
such as that in climate and weather prediction to represent the effects of cloud cover. The 
current results [8] are promising but more applications are needed. 
 
The category Learn Structure, Theory, and Model for Simulation includes smart ensembles 
and collective coordinates with performance gains of up to 108 reported [9]. Here we also see 
the learning of macroscopic structure such as potentials and coarse-graining. The scaling laws 
of N2 to N7 in many-particle potential makes the learning of potentials as a function of particle 
position very attractive and successful in many cases.  
 
The category Learn Surrogates for Simulation is perhaps the most exciting. A recent paper 
reports surrogates learned for ten simulation areas covering astrophysics, climate science, 
biogeochemistry, high energy density physics, fusion energy, and seismology with effective 
speedups reaching 2.109 [4]. This is being used commercially to predict promising drugs [10] (a 
generalized QSAR process also applied in material science) and by General Electric [11] to 
allow interactive exploration of aircraft engines. It is interesting that training set sizes vary from 
hundreds to 14,000; fewer than I would have guessed were necessary. This approach seems 
particularly promising for agent-based simulations (seen in Sociotechnical simulations [12] and 
in virtual tissues) as a surrogate for an agent can be used for all agents in the problem leading 
to significant real speedup. Note surrogates are most effective when they need to be used many 
times so the time to generate the training set does not weigh down the observed effective 
performance. Education is a good use case where surrogates will naturally be used many times 
[13]. These networks are typically convolutional or fully connected. One can also use Recurrent 
Neural Nets (LSTM) to learn numerical differential operators where the surrogate allows much 
larger time steps up to 4000 times that of traditional particle dynamics solvers [14].  

There is much exciting research needed into surrogates including using them in the most 
sophisticated approaches such as fast multipoles. 
 
There are some observations that cross all the MLforCI categories.  

1. We must of course design and build software systems that support ML and DL 
dynamically mixed with simulation. This will be particularly important with a new 
generation of accelerators optimized for ML and DL which will probably not support 
simulation in contrast to GPUs that support both simulation and DL. This should include 
a study of the optimized hardware – CPU, Accelerator, Storage, Network for ML+DL 
dynamically mixed with simulation 

2. We need to learn errors as well as values in differential equation surrogates 
3. We need to investigate the many different forms of deep learning where, for example, 

commercial applications are switching to the so-called transformer networks with 
“attention” mimicking history in a recurrent network. Autoencoders, Reinforcement 
Learning, and GANs are also important deep learning approaches for MLforCI. 

4. DL is making transformational changes in many areas including the geospatial time 
series illustrated by the differential equation LSTM surrogates mentioned above. 
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Currently, this is mainly pursued commercially in transportation systems and 
e-commerce logistics but there is a clear opportunity to understand the many possible 
applications to scientific data streams. 

 
CIforML Remarks 
We have noted that this is already successful and mature as ML and DL tend to have kernels                  
such as linear algebra that we already know how to parallelize with high performance. Graph               
algorithms are a distinctive class of ML problems where dynamic sparsity can be challenging for               
good performance but recently good progress has been seen [15]. As well as classic              
data-center big data problems, we need to support real-time and streaming edge use cases. We               
suggest stronger involvement with the MLPerf collaboration [16] by the cyberinfrastructure           
community. We need to extend their datasets to include scientific examples and extend             
platforms where benchmarks are run. MLPerf’s goal of studying Machine learning performance            
is very important for the scientific research community and we need to design and deploy a high                 
performance deep learning environment meeting the requirements of scientific data analytics.           
We expect that science like the commercial world will see a growing use of deep learning,                
especially for the largest and most complex data analysis problems.  
 
A high performance deep learning system offers an amazingly rich parallel computing 
environment allowing: 

1. Data-parallelism: Decompose tensor index corresponding to data into blocks i.e. divide 
the mini-batch into micro-batches run simultaneously on parallel nodes. Needs 
AllReduce communication [17]  

2. Inter-layer model (pipeline) parallelism: Decompose model by groups of layers in the 
model. Just needs a distributed copy [18], [19] 

3. Intra-layer model parallelism: Decompose one or more other tensor indices. This is 
classic parallel computing and only case where parallelism requires changes to user 
code to implement some variant of MPI parallelism. [20], [21] 

4. Hyper-parameter search parallelism often with a genetic algorithm [22] 
 
Conclusions 
This analysis highlights the challenges and opportunities for using and supporting high 
performance deep learning systems. Challenges include the storage architecture and 
integration between deep learning and other data management and analysis services. Further, 
all of this needs to be efficiently integrated into the total shared system which needs to support 
the major classes of large scale computing applications such as: 

1. MLforCI discussed above 
2. Classic data-center big data problem 
3. Edge to Cloud data-center use case 
4. Simulation supercomputing 

Most importantly we need to explore and enable the transformative opportunities offered by 
MLforCI where the largest gains come from changing algorithms and hence the application 
code. This implies that collaboration is needed between cyberinfrastructure and domain 
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scientists while the rapidly evolving and very sophisticated deep learning methods require 
training material aimed at Deep Learning (or AI) for Science. 
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